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Abstract

We review the surface flux transport model for the evolution of mag-
netic flux patterns on the Sun’s surface. Our underlying motivation
is to understand the model’s prediction of the polar field (or axial
dipole) strength at the end of the solar cycle. The main focus is
on the “classical” model: namely, steady axisymmetric profiles for
differential rotation and meridional flow, and uniform supergranular
diffusion. Nevertheless, the review concentrates on recent advances,
notably in understanding the roles of transport parameters and –
in particular – the source term. We also discuss the physical justi-
fication for the surface flux transport model, along with efforts to
incorporate radial diffusion, and conclude by summarizing the main
directions where researchers have moved beyond the classical model.
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(a) Simulation (b) Simulation 2014-12-31
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(c) Observation (HMI, smoothed) (d) Observation (HMI) CR2158

Fig. 1 An SFT model for Solar Cycle 24 with emerging regions derived from SDO/HMI
SHARPs data (following the method of Yeates, 2020). Panel (a) shows the longitude-
averaged field 〈Br〉 in the simulation, and (b) shows a snapshot of the two-dimensional
field Br on 31 December 2014. For comparison, (c) shows a magnetic butterfly diagram (or
super-synoptic map) constructed from SDO/HMI pole-corrected synoptic maps (Sun, 2018),
smoothed to a comparable resolution to the simulation. The individual, unsmoothed synop-
tic map for Carrington rotation CR2158 is shown in (d). Red/blue denote positive/negative
values, capped at ±10 G in (a,c) and ±50 G in (b,d).

1 Introduction

The surface flux transport (hereafter SFT) model is based on an elegant and
simple idea, originally formulated by Leighton (1964): radial magnetic flux on
the solar surface behaves like a passive scalar field. In other words, flux is
carried around by horizontal plasma flows but with no back reaction on these
flows.

Despite its simplicity, the SFT model has proven remarkably successful at
replicating the magnetic flux patterns on the real solar surface (photosphere).
Figure 1 shows an example SFT simulation for Solar Cycle 24, where new
active regions have been inserted based on magnetograph observations. With
appropriate parameters, the time-latitude “magnetic butterfly diagram” in
the SFT model (Figure 1a) is a good match for the observed time-latitude
plot (Figure 1c) at all latitudes. In general, the success of the SFT model
has led to important applications both as (i) an inner boundary condition for
extrapolations of the magnetic field in the solar atmosphere, and (ii) an outer
boundary constraint on models for the solar interior dynamo.

In this review, our focus is on understanding the model itself: both its
key ingredients and fundamental behaviour when applied in the solar regime.
Details about applications, particularly to the solar atmosphere, may be found
in previous review articles (Sheeley Jr., 2005; Mackay and Yeates, 2012; Wang,
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2017). In the solar dynamo context, the SFT model has been used to constrain
theories and models of the magnetic field in the solar interior (e.g., Cameron
et al, 2012; Cameron and Schüssler, 2015; Jiang et al, 2014b; Lemerle and
Charbonneau, 2017; Whitbread et al, 2019; Hazra, 2021). But it is also a
valuable practical tool for solar cycle prediction, enabling predictions to be
made of the polar field at the end of the current solar cycle, and hence –
through well-established correlations – the amplitude of the following solar
activity cycle (e.g., Cameron et al, 2016; Iijima et al, 2017; Jiang et al, 2018;
Upton and Hathaway, 2018; Bhowmik and Nandy, 2018; Jiang et al, 2022).
Understanding the origin and limitations of such polar field predictions requires
an understanding of the SFT model itself, which is what we seek to provide
here.

The review is organised as follows. In Section 2, we present the basic
equations of the “classical” SFT model. Section 3 discusses the imposed flows
in the model, including the importance of including meridional flow and recent
work on constraining the flow parameters. Section 4 discusses the source term
representing new flux emergence, which is fundamental to the flux patterns
that the model predicts. Section 5 examines the important question of whether
the SFT model – usually seen as purely phenomenological – can be derived
from physical principles. We conclude in Section 6 with an overview of model
features beyond our “classical” version.

2 Fundamentals of the Classical Model

Denoting the radial magnetic field distribution by Br(θ, φ, t), the equation for
a passive scalar field is

∂Br
∂t

+∇h ·
(
uhBr

)
= η∇2

hBr + S, (1)

where uh is the imposed advection velocity, and η is the diffusivity. In the
classical model, Br represents the large-scale mean field, and η is a turbulent
diffusivity modelling the net effect of unresolved supergranular-scale convec-
tive motions. For SFT it is necessary to include also a prescribed source term
S(θ, φ, t) that describes the emergence of new magnetic flux, typically in the
form of active regions. In a more complete physical model, S would arise self-
consistently through Faraday’s induction equation (to be discussed in Sections
5 and 6), but in the classical SFT model it is a prescribed model input.
Throughout we will use subscript h to denote the “horizontal” components of
a vector, meaning those tangential to the solar surface.

In the classical SFT model, the diffusivity η is uniform and constant, and
most authors assume a steady, axisymmetric imposed velocity of the form

uh(θ) = R� sin θΩ(θ)eφ + uθ(θ)eθ. (2)
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Thus Ω(θ) represents the angular velocity of solar differential rotation, and
uθ(θ) represents the meridional circulation. The choice of these flows is
important and will be discussed further in Section 3. Relaxing the classi-
cal assumptions is considered in Section 6 (except for the addition of an
exponential decay term which is discussed in Section 5).

2.1 Dimensionless Form

Ignoring S, we can consider non-dimensionalization of equation (1) by defining
dimensionless variables u′h = uh/U0, ∇′h = R�∇h and t′ = tU0/R�, where U0

is a typical flow speed. Then (1) becomes

∂Br
∂t′

+∇′h ·
(
u′hBr

)
=

1

Rm
∇′h

2
Br, (3)

suggesting that the behaviour (in the absence of new emergence) is controlled
by the dimensionless magnetic Reynolds number

Rm =
R�U0

η
. (4)

In effect, it is only the relative speed of advective to diffusive transport that
matters.

2.2 Explicit Form

Writing out (1) explicitly in spherical coordinates, and assuming (2), gives the
standard SFT equation

∂Br
∂t

+
1

R� sin θ

∂

∂θ

(
sin θ uθBr

)
+ Ω(θ)

∂Br
∂φ

=

η

R2
� sin θ

∂

∂θ

(
sin θ

∂Br
∂θ

)
+

η

R2
� sin2 θ

∂2Br
∂φ2

+ S. (5)

In some applications it suffices to consider the longitude-averaged field,

〈Br〉(θ, t) =
1

2π

∫ 2π

0

Br(θ, φ, t) dφ. (6)

Integrating (5), we find that 〈Br〉 obeys the one-dimensional equation

∂〈Br〉
∂t

+
1

R� sin θ

∂

∂θ

(
sin θ uθ〈Br〉

)
=

η

R2
� sin2 θ

∂

∂θ

(
sin θ

∂〈Br〉
∂θ

)
+ 〈S〉,

(7)

showing in particular that differential rotation has no effect on the evolution
of 〈Br〉 (Leighton, 1964). On the other hand, the differential rotation – being
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(a) Differential Rotation
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(b) Meridional Flow

(i) ∼ cos θ sin3.87 θ

(ii) ∼ cos θ sin2.33 θ

(iii) ∼ erf7(2 sin θ) erf(8 cos θ)

Fig. 2 Velocity profile of differential rotation in the Carrington frame (a), and some example
optimized profiles of meridional flow velocity (b), including (i) the simulation shown in
Figure 1; (ii) the Cycle 21 simulation of Whitbread et al (2017); and (iii) the Cycle 21
simulation of Lemerle et al (2015). The corresponding values of ∆u are (i) 0.7 × 10−7 s−1,
(ii) 0.4× 10−7 s−1, and (iii) 1.6× 10−7 s−1.

the fastest flow – plays an important role in determining the two-dimensional
flux patterns seen on the solar surface. By increasing the length of the polarity
inversion lines in and between active regions, it also speeds up the diffusive
cancellation of non-axisymmetric components of Br (Sheeley Jr. and DeVore,
1986).

2.3 Implementation

Although some analytical analysis is possible (see Sheeley Jr. and DeVore,
1986; DeVore, 1987, and also Section 4 below), for most applications it is
usual to solve (5) or (7) with numerical methods. This dates right back to
the original paper of Leighton (1964). The most natural numerical approach
would be a spectral method based on spherical harmonics, as implemented
for example by Mackay et al (2002) or Baumann et al (2004) (see Bau-
mann, 2005, for more details). However, care is needed in treating the source
term S, since newly-emerging active regions are typically highly localized in
space and usually require filtering in spectral space to avoid the Gibb’s phe-
nomenon (“ringing”). A more straightforward approach is to use a simple
explicit finite-volume method designed to conserve magnetic flux (i.e., preserve∫ 2π

0

∫ π
0
Br(θ, φ, t) sin θ dθdφ = 0). The resulting time-step restriction is typi-

cally not a severe problem on modern machines, given the two-dimensional
nature and modest resolutions typically used (for example, a 360 × 180
mesh). Much higher resolutions would not be consistent with the mean-field
assumption of the classical model (alternatives are discussed in Section 6).
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(a) uθ = R�∆u cos θ sin3.87 θ
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(b) uθ = 0
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(c) 〈Br〉 on 2020-04-04

(a)
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Predicted steady state profile

Fig. 3 Effect of meridional flow in the simulation from Figure 1, showing latitude-time
plots of 〈Br〉 when the flow is included (a) or omitted (b). Panel (c) shows the latitudinal
profiles of 〈Br〉 at the end of the simulation. The dashed curve shows the (near) steady-state
profile (11) for the case with flow. (After Figure 3 of Sheeley Jr., 2005).

3 Flows

3.1 Differential Rotation

The solar surface differential rotation is well constrained observationally and
usually treated as a fixed constraint. Typically, SFT models use a steady
axisymmetric angular velocity profile such as

Ω(θ) = 0.18− 2.396 cos2 θ − 1.787 cos4 θ
[◦ day−1

]
(8)

as determined by Snodgrass and Ulrich (1990). The constant term here is
written in the Carrington frame that is usually adopted for SFT simulations.
The resulting velocity profile is shown in Figure 2(a). As mentioned above, the
differential rotation affects only the non-axisymmetric component of Br, not
the axisymmetric component 〈Br〉, and will not be discussed further.

3.2 Meridional Flow

Although the only large-scale flow included by Leighton (1964) was the dif-
ferential rotation, it became clear from subsequent investigation of the SFT
model that adding a meridional flow gives more realistic magnetic flux distri-
butions (DeVore et al, 1984). In particular, a poleward flow is needed in order
to concentrate the magnetic field into polar caps at the end of the solar cycle –
compare Figures 3(a) and (b). Otherwise, once Br has become approximately
axisymmetric it will tend to the slowest decaying (` = 1) eigenmode of the
diffusion operator, which is the dipole Br ∼ cos θ. (A pure dipole is not seen
in Figure 3c because it requires a few more years: the decay time for the next
higher mode, l = 2, is R2

�/[ηl(l + 1)] ≈ 6 yr.)
Observational evidence now clearly supports the existence of a surface

meridional flow (Hanasoge, 2022) although it is much slower than the differen-
tial rotation and potentially more variable. As such, different modellers have
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used different flow profiles. A typical example (from Whitbread et al, 2017)
has a single peak in each hemisphere,

uθ(θ) = R�∆u cos θ sinp θ, (9)

illustrated by profiles (i) and (ii) in Figure 2(b). Larger values of the parameter
p lead to a flow that is more concentrated at the equator. Here ∆u is the flow
divergence at the equator; the corresponding peak flow speed is

max
θ
uθ(θ) = ± R�∆u p

p/2

(1 + p)(1+p)/2
(10)

at cos θ = ±(1 + p)−1/2.
It is non-trivial to determine the precise eigenmodes of equation (7) when

meridional flow is included (DeVore, 1987), even with a simple flow profile
such as (9). However, one can determine a useful approximation by seeking a
perfectly axisymmetric steady state Br(θ) that balances the poleward advec-
tion with diffusion. For example, for the flow profile (9), equation (7) can be
solved in an individual hemisphere to give the steady state solution

Br(θ) = Br(0) exp

[
−Rm0 sin1+p θ

(1 + p)

]
. (11)

Here Rm0 = R2
�∆u/η, which is the magnetic Reynolds number Rm from (4)

with the specific choice U0 = R�∆u, highlighting explicitly the dependence
of the solution on the magnetic Reynolds number. The amplitude Br(0) will
depend on the initial condition and source term S and cannot be determined
directly. The solution (11) can only be an approximation to the slowest-
decaying eigenfunction because it is necessarily non-zero at the equator, and
will therefore generate a discontinuity at the equator when applied in both
hemispheres with opposite sign. However, this discontinuity is small for typical
values of Rm0 and will lead to diffusive cancellation only on a timescale much
longer than the solar cycle (cf. Cameron et al, 2010). Indeed, Figure 3(c) shows
that (11) gives an excellent approximation to the latitudinal Br profile at the
end of the example simulation in Figure 3(a), particularly in the Northern
hemisphere. (In the Southern hemisphere there is a remnant active region at
low latitude that modifies the profile.) This simulation used η = 425 km2s−1,
p = 3.87, ∆u = 6.9× 10−8 s−1, and consequently Rm0 ≈ 79.

3.3 Parameter Optimization

The key flow parameter to choose is the meridional flow profile uθ(θ), along
with the diffusivity coefficient η. The basic effects of varying these parameters
were investigated in the 1980s (DeVore et al, 1984; Wang et al, 1989). A more
systematic parameter study was published by Baumann et al (2004), who
explored the results of varying both η and the meridional flow amplitude (in
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addition to properties of the source term), albeit varying only one parameter
at a time and not the shape of the meridional flow profile.

More recent studies have explored the parameter space more widely, and
have also attempted to optimize the parameters directly against synoptic mag-
netogram observations. The two most general studies are Lemerle et al (2015)
and Whitbread et al (2017), who both allow the strength and shape of uθ(θ)
to vary, in addition to η. For uθ, Whitbread et al (2017) allowed for profiles
of the form (9), whereas Lemerle et al (2015) allow for the more general (but
still single-peaked) form

uθ(θ) = −u0 erfq(ν sin θ) erfn(w cos θ). (12)

The optimal profiles from both studies for data from Cycle 21 are shown in
Figure 2. At present, it is not possible to select confidently between these
solutions using observations, though helioseismic measurements of the plasma
flow suggest equatorial slopes ∆u in the range [0.6−1.2]×10−7 s−1 – somewhere
between profiles (i) and (iii) in Figure 2. Measurements based on magnetic
feature tracking give lower equatorial slopes more like that of profile (ii), but
it has been suggested that these are contaminated by supergranular diffusion
(Dikpati et al, 2010; Wang, 2017). A recent list of observations is given in
Jiang et al (2022).

Both of the above studies used the same genetic optimization algorithm,
PIKAIA (Charbonneau and Knapp, 1995). They differed in their chosen
goodness-of-fit functions, although both were ultimately derived from compar-
ing to observed Br(θ, φ) maps. Whitbread et al (2017) gave more weight to
lower latitudes (where magnetogram observations are more reliable), whereas
Lemerle et al (2015) gave additional weight to the mid-latitude “transport
regions” (because they represent the result of the model evolution rather than
only the active region emergence) and to the axial dipole strength. At the other
extreme, Petrovay and Talafha (2019) carried out another parameter study in
the 1D model but focusing on only the high latitude (polar) field. This study
used a synthetic (averaged) source term and fitted to average cycle properties
from Wilcox Observatory polar field measurements, such as reversal time or
width of the polar cap.

A robust finding in these optimization studies is a degeneracy between η
and the amplitude of uθ. This is illustrated by Figure 4, which shows that there
is a long ridge of near-optimal solutions in parameter space. Increasing both
parameters together tends to lead to a equally (or nearly equally) well-matched
solution, perhaps explaining why different groups have been able to use quite
different values of η – for example, Cameron et al (2010) use η = 250 km2s−1 as
their standard value whereas the simulation in Figure 1 used η = 425 km2 s−1.
This degeneracy makes sense given the appearance of the magnetic Reynolds
number Rm in equation (3), which is essentially the ratio of η to |uθ|. It means
that SFT simulations can not be used to constrain both the meridional flow
and diffusion from magnetogram observations alone.
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Fig. 4 Fitness function χ−2 as a function of meridional flow amplitude u0 = maxθ|uθ| (hor-
izontal axis) and diffusivity ηR ≡ η (vertical axis), from the optimization study of Lemerle
et al (2015). Black lines show the optimum value and blue lines the limit of the accept-
able region (χ−2 ≥ 93%χ−2

max). (© AAS. Reproduced with permission. Original article:
http://dx.doi.org/10.1088/0004-637X/810/1/78)

When optimizing the model individually for different solar cycles, Whit-
bread et al (2017) found some cycle-to-cycle variation in the optimal speeds
and diffusivities. This is understandable given the phenomenological nature of
the model (to be discussed further in Section 5). Indeed, when simulating mul-
tiple cycles, Wang et al (2002) had previously varied the meridional flow speed
from cycle to cycle so as to avoid unrealistic drift of the polar field over time.
On the other hand, other authors have avoided this problem by varying instead
the tilts of emerging active regions (Cameron et al, 2010, see also Section 4.3),
or adding an addition decay term (to be discussed in Section 5). In reality it is
likely that the effective mean-field meridional flow varies even over the course
of a single Solar Cycle (see Section 6). Interestingly, Hung et al (2017) have
shown – in the context of a flux-transport (interior) dynamo model – that a
time-dependent meridional flow may be recovered from surface magnetic data
through variational data-assimilation, and in future this approach could also
be tried for SFT.

http://dx.doi.org/10.1088/0004-637X/810/1/78
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(θ+, φ+)

(θ−, φ−)

ρ0

Fig. 5 Positive and negative contours of Br for a BMR of the Van Ballegooijen et al (1998)
form (14). The size is exaggerated (ρ0 = 25◦) compared to a real active region. This example
follows Joy’s Law in that the leading (rightmost) polarity is closest to the equator.

4 The Source Term

The magnetic flux patterns in the SFT model are determined in large part by
the source term S(θ, φ, t), which – in the classical mean-field model – represents
the emergence of new macroscopic active regions on the solar surface. Since
the classical SFT equation (1) is linear in Br, the solution is a superposition
of solutions for each individual active region, so it is insightful to consider
the evolution of one of these regions in isolation. Since most SFT simulations
follow the evolution for periods of years, it is usual to emerge each active region
instantaneously in time, so that

S(θ, φ, t) =
∑
i

B(i)
r (θ, φ)δ(t− t(i)), (13)

where B
(i)
r (θ, φ) is the magnetic field of an individual active region emerging

at t = t(i).
Traditionally, SFT models treat each active region as a bipolar magnetic

region (BMR). Figure 5 shows the shape used by Van Ballegooijen et al (1998),
with circular flux patches centred on the poles (θ−, φ−) and (θ+, φ+) and
having the form

Br(θ, φ) = B0

{
exp

[
−2(1− cosβ+)

(bρ0)2

]
− exp

[
−2(1− cosβ−)

(bρ0)2

]}
, (14)

where

cosβ± = cos θ± cos θ + sin θ± sin θ cos(φ− φ±), (15)

cos ρ0 = cos θ+ cos θ− + sin θ+ sin θ− cos(φ+ − φ−). (16)
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Fig. 6 Long term evolution of three identical BMRs emerged at different latitudes (λ0 =
π/2 − θ0) in the SFT model. Left column shows the initial BMRs and right column the
time-latitude plot of 〈Br〉 in each case.

Thus β±(θ, φ) denote the heliocentric angles from each pole, and ρ0 the helio-
centric angle between them. Van Ballegooijen et al (1998) took b = 0.4,
and chose B0 so that

∫
S
|Br| sin θ dθ dφ = 2Φ0. For some purposes, one can

approximate (14) with a pair of Dirac-delta sources,

Br(θ, φ) =
Φ0

R2
� sin θ

[
δ(θ − θ+)δ(φ− φ+)− δ(θ − θ−)δ(φ− φ−)

]
. (17)

Although the precise chosen shape for BMRs varies between implemen-
tations (see Yeates, 2020, for another variation), the key properties are the
magnetic flux, Φ0, and pole locations, (θ−, φ−) and (θ+, φ+). The latter may
equivalently be specified by giving the coordinates of the BMR centre (θ0, φ0)
along with the separation ρ0 as in (16) and tilt angle γ0, typically defined by

tan γ0 =
θ+ − θ−

sin θ0(φ+ − φ−)
. (18)

Together these BMR properties determine both the short-term and long-term
evolution of the region.

After a new region emerges, much of its magnetic flux cancels by supergran-
ular diffusion. Physically, this models the observed process of flux cancellation
at the polarity inversion line (PIL) between the positive and negative polari-
ties. This cancellation rate is enhanced as the region is sheared by differential
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rotation and the PIL lengthened. On short-timescales (days) it is possible to
approximate the solar surface as a Cartesian plane. Assuming a linear shear
flow profile for the differential rotation, Lagrangian variables can be used to
solve the Cartesian form of (1) for the exact evolution Br(θ, φ, t) of a tilted
BMR (we will see an example in Section 4.1). On longer timescales, it is
necessary to follow the evolution numerically.

It takes approximately 2 years for the non-axisymmetric component of
Br to cancel completely (Wang and Sheeley, Jr., 1991). Whether or not any
axisymmetric Br remains on a longer timescale depends on how much flux of
one polarity escapes across the equator so that the two polarities are pushed
to opposite poles by the meridional flow. An untilted region will send both
polarities equally to each pole and so leave no asymptotic contribution at
the end of the solar cycle. In a similar way, a (tilted) region that is nearer
to the equator will produce a greater asymptotic contribution, because more
flux escapes across the equator before being cancelled. This important effect
is illustrated in Figure 6, where the same BMR is inserted at three different
latitudes.

4.1 Dipole Amplification Factor of a BMR

A common way to measure the end-of-cycle contribution of an individual BMR
is through its axial dipole strength

b1,0(t) =
3

4π

∫ 2π

0

∫ π

0

Br cos θ sin θ dθ dφ =
3

2

∫ π

0

〈Br〉 cos θ sin θ dθ. (19)

By linearity of the classical SFT model, the total axial dipole strength will be
the sum of the individual contributions from all of the active regions.

At the time of emergence, a BMR with the simple form (17) has

b1,0(tem) =
3Φ0

4πR2
�

∫ π

0

[
δ(θ − θ+)− δ(θ − θ−)

]
cos θ dθ (20)

=
3Φ0

4πR2
�

(
cos θ+ − cos θ−

)
(21)

=
3Φ0

2πR2
�

sin

(
θ− − θ+

2

)
sin

(
θ+ + θ−

2

)
(22)

≈ − 3Φ0

4πR2
�
ρ0 sin γ0 sin θ0. (23)

Here we have defined the central colatitude θ0 = (θ+ + θ−)/2 and recognized
that for tilt angle γ0 and heliocentric angle ρ0 between the poles, their latitu-
dinal separation is (θ+ − θ−) = ρ0 sin γ0 (assuming θ+ > θ−). Thus, as noted
by Wang and Sheeley, Jr. (1991), the axial dipole strength of a newly-emerged
BMR depends on its flux, its latitudinal pole separation, and the cosine of its
emergence latitude.
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Fig. 7 Latitude dependence of the dipole amplification factor for BMRs in different pub-
lished SFT models. The solid lines show Gaussian fits. Reproduced from Petrovay et al
(2020).

Importantly, the axial dipole strength of a BMR can change under the
ensuing SFT evolution: it will be amplified if the BMR emerged near the
equator, or will decay if the BMR emerged far from the equator. It was first
recognized by Jiang et al (2014a) that the “dipole amplification factor”

f∞ = lim
t→∞

b1,0(t)

b1,0(tem)
(24)

is well approximated by a Gaussian function of latitude, of the form

f∞(λ0) = A exp

(
− λ2

0

2λ2
R

)
, (25)

where it is convenient to work in terms of latitude λ rather than colatitude
θ (the two are related by λ = π/2 − θ). Figure 7 shows the functional form
measured in several different numerical SFT models, where we note that both
the amplitude A and width λR depend on the model. Once these parameters
are known, equation (25) – coupled with the linearity of the SFT evolution
equation (5) or (7) – allows the net axial dipole strength at the end of a solar
cycle to be determined algebraically just by adding up the contributions of the
individual BMRs, without the need to solve the evolution equation (Petrovay
et al, 2020).

The interpretation of Figure 7 is that only BMRs that emerge with latitude
|λ| < λR will contribute to the global dipole moment at the end of the solar
cycle. Petrovay et al (2020) call λR the “dynamo effectivity range”, and give
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the following simple physical derivation. To give a lasting contribution, a BMR
must be close enough to the equator that some of its leading-polarity flux is
able to cross the equator by diffusion, in opposition to the meridional flow.
The timescale for advective separation at the equator is ∆−1

u , where ∆u =
R−1
� u′θ(π/2) is the equatorial divergence of uθ(θ). Equating this to the diffusion

timescale (λR�)2/η from latitude λ to the equator suggests that

λR ≈
√

η

R2
�∆u

= Rm
−1/2
0 . (26)

Note the reappearance of the magnetic Reynolds number from Section 3.2.
Petrovay et al (2020) computed f∞(λ0) for numerical solutions with several
different uθ profiles, and in most cases found that the Gaussian width λR was

indeed well approximated by Rm
−1/2
0 , the exception being a flow where uθ

peaks at a very low latitude compared to observations.
Petrovay et al (2020) went further and derived (25) analytically. The trick

is to recognize that the final dipole moment – once the Br distribution has
become (near) axisymmetric – will be proportional to the remaining net mag-
netic flux in each hemisphere. (There will also be a coefficient depending on the
latitudinal profile of the near-steady state as in (11).) Because it is determined
purely by flux crossing the equator, the evolution of the net hemispheric flux
can be quite well approximated by a Cartesian SFT model near the equator,
which has the advantage of being analytically tractable. Thus Petrovay et al
(2020) consider the “low-latitude limit” of (7),

∂〈Br〉
∂t

+
1

R�

∂

∂λ

(
uλ〈Br〉

)
=

η

R2
�

∂2〈Br〉
∂λ2

. (27)

By choosing the linearised meridional flow uλ = R�∆uλ, we can define
the Lagrangian coordinate ` = e−∆utλ and new time variable τ =(
1− e−2∆ut

)
/(2Rm0) to reduce Equation (27) to a standard diffusion equation

D

Dτ

(
e∆ut〈Br〉

)
=

∂2

∂`2
(
e∆ut〈Br〉

)
, (28)

where D/Dt denotes the partial derivative with ` kept constant rather than λ.
Equation (28) may be solved for a variety of initial conditions using standard
techniques.

If the initial condition consists of a single (monopole) point source,

〈Br〉(λ, 0) =
Φ0

2πR2
�
δ(λ− λ0), (29)
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then solving (28) gives

e∆ut〈Br〉 =
Φ0

2πR2
�
√

4πτ
exp

(
− (`− λ0)2

4τ

)
, (30)

which for large t is approximately

〈Br〉(λ, t) ∼
Φ0

√
Rm0e−∆ut

2πR2
�
√

2π
exp

(
−Rm0

(
e−∆utλ− λ0

)2
2

)
. (31)

In the approximation (31), the flux difference between the hemispheres is

ΦN − ΦS = 2πR2
�

(∫ ∞
0

〈Br〉dλ−
∫ 0

−∞
〈Br〉dλ

)
= Φ0 erf

(√
Rm0

2
λ0

)
,

(32)

valid for either sign of λ0.
For a BMR we must combine two point sources as in (17), each contributing

half of the flux Φ0, so

ΦN − ΦS =
Φ0

2

[
erf

(√
Rm0

2
λ+

)
− erf

(√
Rm0

2
λ−

)]
(33)

≈ Φ0

√
Rm0(λ+ − λ−)√

2π
exp

(
−Rm0λ

2
0

2

)
, (34)

where we recognize the finite difference as an approximation of the derivative
at λ0 = (λ− + λ+)/2. We therefore expect that, to a good approximation,
b1,0(t) → a(ΦN − ΦS)/R2

� as t → ∞, for some constant a that depends on
the (normalized) shape of the steady Br profile (thus only on uθ and D). At
the initial time, Equation (23) gives b1,0(0) = 3Φ0(λ+ − λ−) cosλ0/(4πR

2
�).

Approximating cosλ0 ≈ 1, the ratio is therefore

f∞ ≈
a
√

8πRm0

3
exp

(
−Rm0λ

2
0

2

)
. (35)

Thus we recover (25) with λR = Rm
−1/2
0 as claimed. Moreover, for a known

asymptotic profile of Br(θ), we can determine a and hence also predict the
amplitude A.

4.2 Non-Bipolar Source Regions

Real solar active regions cannot always be represented as simple, symmetric
BMRs. Even a region with two polarities will be effectively “multipolar” if the
polarities are asymmetric in shape, and this will modify the evolution of b1,0
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Fig. 8 Evolution of an active region with asymmetric bipolar shape, taken from the simu-
lation in Figure 1. The left column shows the region with its original shape, with second row
showing 〈Br〉 and third row the axial dipole strength b1,0. The right column shows the evo-
lution of an “equivalent” symmetric BMR having the same initial flux and b1,0. The dashed
line shows the final b1,0 predicted by equation (36) using the observed magnetogram.

compared to a symmetric BMR. This was investigated by Iijima et al (2019),
who ran SFT simulations with Gaussian BMRs of the form (14), but where
the leading polarity has a narrower width than the following polarity (con-
trolled by the b parameter in (14)). When calibrated to the observed level of
sunspot area asymmetry, their SFT simulation gave a more realistic evolution
of both b1,0 and the magnetic butterfly diagram, as compared to a reference
simulation with equally-sized polarities. In particular, they noted that a wider
following polarity leads to more following polarity flux crossing the equator,
cancelling some of the trans-equatorial leading polarity flux and weakening
the asymptotic contribution of the region. Similarly, Wang et al (2021) found
for asymmetric BMRs with more diffuse following polarity, that f∞ is sys-
tematically reduced (see their Figure 4). As an illustration, Figure 8 shows
an example of the SFT evolution for an asymmetric region; in this case, the
effect is sufficiently extreme to reverse the sign of b1,0 altogether compared to
a symmetric BMR.

Jiang et al (2019) considered the SFT evolution of a more complex “δ-
type” flux distribution. They showed that b1,0 changed sign during the SFT
evolution, ending up with a completely different end-of-cycle contribution than
would be expected for a BMR emerging at the same latitude with the same
flux and same initial b1,0. Wang et al (2021) showed further that the dipole
amplification f∞ is no longer a simple function of emergence latitude for such
complex regions. However, the net effect of all of the real complex and asym-
metric regions seems to be a reduction in the net end-of-cycle dipole, at least for
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Fig. 9 The smooth source term 〈S〉(λ, t) used by Petrovay and Talafha (2019). In (a),
red/blue contours show 〈S〉, and dashed lines indicate ± sin[λ0(t)] from (39). Panel (b) shows
the overall cycle shape A(t) from (38) with a = 0.00185, b = 4.058, c = 0.71.

Cycle 24. Evidence for this comes from Yeates (2020), who compared an SFT
simulation of that cycle where all active regions emerged with their observed
flux distributions to a simulation where they were all approximated by sym-
metric BMRs with the same flux and initial b1,0. The net b1,0 at the end of the
cycle was overestimated by 24% when the regions were modelled with BMRs.

For predicting the dipole contributions of more complex regions, Wang
et al (2021) showed that (35) can be generalized to regions with non-bipolar
shapes, by treating them as a superposition of point sources. In particular,
for an active region with initial flux distribution Br(θ, φ, 0), combining the
hemispheric flux differences (32) predicts that the axial dipole strength at the
end of the cycle would be

lim
t→∞

b1,0(t) ≈ a

R2
�

∫
S

Br(θ, φ, 0) erf

[√
Rm0

2

(π
2
− θ
)]

sin θ dθdφ, (36)

where a is the coefficient in the relation b1,0 ≈ a(ΦN − ΦS)/R2
�. Wang et al

(2021) verified this prediction against SFT simulations for 84 regions during
Cycle 24. It gives an accurate prediction for the region in Figure 8.

4.3 Modelling the Source Term

It is not always viable to use observations of real individual active regions to
construct the source term. This situation arises when working with historical
data, when running SFT models into the future for forecasting purposes, or
just in conceptual simulations studying the underlying physics. In such cases
the source term S(θ, φ, t) needs to be modelled, either as a smooth function
(e.g., Cameron and Schüssler, 2007; Petrovay and Talafha, 2019) or as random
realizations of active regions drawn from a statistical distribution (e.g., Schri-
jver, 2001; Mackay and Lockwood, 2002; Baumann et al, 2004; Jiang et al,
2018; Wang and Lean, 2021).

The smooth function approach has primarily been used in the 1D SFT
model, (7), for example by Petrovay and Talafha (2019), who use a pair of flux



Springer Nature 2021 LATEX template

18 Surface Flux Transport

rings in each hemisphere, shown in Figure 9(a) and given by

〈S〉(λ, t) = (−1)nA(t)

{
exp

(
− [λ− λ+(t)]2

2δ2
λ

)
− exp

(
− [λ− λ−(t)]2

2δ2
λ

)
+ exp

(
− [λ+ λ+(t)]2

2δ2
λ

)
− exp

(
− [λ+ λ−(t)]2

2δ2
λ

)}
. (37)

This model incorporates a number of observed solar cycle features:

(i) All polarities alternate according to the solar cycle number, n.
(ii) The cycle has an asymmetrical shape in time, shown in Figure 9(b) and

given by the Hathaway et al (1994) observed fit

A(t) = a(t− tmin)

(
exp

[
(t− tmin)2

b2

]
− c
)−1

, (38)

where tmin is the start of the cycle.
(iii) The centres ±λ0 of each pair of flux rings, i.e. λ0 = (λ+ + λ−)/2 shown by

dashed lines in Figure 9(a), migrate equatorward at the rate

λ0(t) = 26.4− 34.2

(
t

T

)
+ 16.1

(
t

T

)2

[◦] (39)

fitted empirically by Jiang et al (2011), where T is the cycle length (11
years).

(iv) The separation ∆λ = λ− − λ+ decreases as λ0 approaches the equator,
according to

∆λ(t) = 0.5
sinλ0(t)

sin 20◦
[◦]. (40)

This models the longitude-averaged effect of the well-established Joy’s Law
(van Driel-Gesztelyi and Green, 2015), whereby BMRs emerging at lower
latitude have (on average) smaller tilt angle |γ0|, defined in (18).

The statistical BMR approach is similar, except the functions above are
treated as overall distributions from which discrete BMRs are chosen at ran-
dom. For the longest historical simulations, which date back to 1700 (Jiang
et al, 2018; Wang et al, 2021), the only observational input is the sunspot
number time series – equivalent to emergence rate, A(t). For 20th Century sim-
ulations, data on the areas and locations of individual sunspot groups can be
used (e.g., Cameron et al, 2010). However, even here the magnetic flux and tilt
angle (equivalently axial dipole strength) must be chosen at random as they
are not available observationally before the onset of routine magnetograms in
the 1970s.

The tilt angle is problematic as Joy’s Law, as modelled in (40), holds only
for the mean, and there is known to be very significant scatter (e.g., Wang and
Sheeley, Jr., 1989; Yeates, 2020). Recent studies have shown that individual
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“rogue” active regions – defined as those with dipole moments significantly
different from Joy’s Law expectation at their latitude – can have a significant
effect on the overall polar field at the end of the cycle (Jiang et al, 2015; Nagy
et al, 2017). In light of (35), such rogue regions must typically emerge near to
the equator, although their relative contribution depends on Rm0 and would
be reduced if Rm0 were large. Nevertheless, simulations based on statistical
source terms without individual dipole moment data should be treated with
caution, particularly for prediction.

The widely-accepted αΩ paradigm for the solar dynamo suggests a “self-
consistent” way to build a fully synthetic SFT model: set the amount flux
emerging through the source term in cycle n proportional to the axial dipole
strength at the end of cycle n − 1. Talafha et al (2022) modified the one-
dimensional model of Petrovay and Talafha (2019) to use such an approach.
They used this model to systematically study the impact of two possible non-
linearities in the source term: tilt quenching (where BMRs are less tilted in
strong cycles) and latitude quenching (where BMRs emerge at higher lati-
tudes in strong cycles). SFT simulations show that both effects act to reduce
the axial dipole produced in strong cycles (Cameron et al, 2010; Jiang, 2020).
They are both therefore possible saturation mechanisms to explain why the
solar dynamo doesn’t exhibit runaway exponential growth. Talafha et al (2022)
showed that the relative impact of tilt versus latitude quenching on the end-
of-cycle axial dipole depends primarily on the dynamo effectivity range λR in
equation (26). In particular, for small λR, latitude quenching reduces the end-
of-cycle dipole more than tilt quenching, and vice versa for large λR. However,
the amount of tilt and/or latitude quenching present on the real Sun remains
under debate.

5 Physical Justification

As introduced by Leighton (1964), the SFT model is purely phenomenological.
But can equation (1) be derived from known physical laws? The relevant law
governing the evolution of the large-scale magnetic field is the mean-field MHD
(magnetohydrodynamic) induction equation,

∂Br
∂t

= er · ∇ ×
(
u×B− η∇×B

)
, (41)

where u is the plasma velocity and – anticipating the form of (1) – we have
made a simple approximation for the turbulent electromotive force of the form
−η∇ × B (cf. McCloughan and Durrant, 2002). Thus η represents turbulent
diffusivity, not ohmic resistivity (which is negligible in the highly conducting
photosphere). This assumption of a turbulent diffusivity is discussed further
in Section 5.3 below.
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Consider the first term in (41). Decomposing u = uh+urer, where er ·uh =
0, and similarly B = Bh +Brer, we can write

er · ∇ ×
(
u×B

)
= ∇ ·

(
urBh

)
−∇ ·

(
uhBr

)
. (42)

The last term is precisely the advection term in the SFT equation (1), while the
term ∇ ·

(
urBh

)
represents flux emergence, so corresponds to the source term

S in (1). Thus the SFT model is incorporating the correct advection terms.
Now consider the diffusion term in (41). For simplicity, we will assume that

η = η(r) only, in which case

−er · ∇ ×
(
η∇×B

)
= η∇2

hBr +Rη. (43)

This has the diffusion term from (1) plus an additional remainder term

Rη = − η

R�
∇h ·B−

η

R� sin θ

∂

∂θ

(
sin θ

∂Bθ
∂r

)
− η

R� sin θ

∂

∂φ

(
∂Bφ
∂r

)
. (44)

Using ∇ ·B = 0, this may be rewritten entirely in terms of Br, simplifying to

Rη =
η

R2
�

∂2

∂r2

(
r2Br

)
. (45)

Thus in mean-field MHD there is an additional term representing the radial
diffusion of magnetic flux that is missing from the original SFT equation (1).
Physically, this incorporates the fact that the surface magnetic field is con-
nected to the interior; for example, the decay of active regions can be slowed
if they remain connected to deeper layers of the convection zone where the
diffusivity is lower (Wilson et al, 1990; Whitbread et al, 2019).

Self-consistent computation of the radial diffusion term Rη would require
simulation of the three-dimensional magnetic field in the solar convection
zone. However, two approaches have been used to parametrize (45) in SFT
models without the need for three-dimensional simulations, and these will be
considered next.

5.1 Exponential Decay Term

The most common parametrization for the radial diffusion term (45) is to
assume that Rη ≈ −Br/τ , so that (1) becomes

∂Br
∂t

+∇h ·
(
uhBr

)
= η∇2

hBr −
Br
τ

+ S. (46)

Multiplying by et/τ shows that

∂

∂t

(
et/τBr

)
+∇h ·

(
uhet/τBr

)
= η∇2

h

(
et/τBr

)
+ et/τS. (47)
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Fig. 10 Application of the radial diffusion term to reduce spurious cycle-to-cycle memory
in the SFT model, from Baumann et al (2006). The top row shows the north polar field
(above 75◦ latitude) in a simulation with no radial diffusion, while the middle and bottom
rows show the same simulation with η0 = 50 km2s−1 and 100 km2s−1 according to the
prescription in Section 5.2. The simulation uses random emerging BMRs proportional to the
observed sunspot numbers. The dashed line shows a simulation started in 1750, illustrating
how the memory of the initial conditions persists. (Credit: Baumann, I., Schmitt, D. and
Schüssler, M., A&A, 446, 307-314, 2006, reproduced with permission © ESO.)

Thus if B∞r denotes the solution to the original equation (1), corresponding
to τ →∞, then the solution with finite τ but all other parameters the same is
Br = e−t/τB∞r . In other words, the solution decays exponentially at uniform
rate τ−1. For example, the dipole amplification factor (35) for a BMR would
become

f∞ ≈
√

8πRm0

3
exp

(
−Rm0λ

2
0

2

)
exp

(
− t
τ

)
, (48)

reflecting continuing decay of the magnetic field due to the new term.
The first application of such a decay term was by Schrijver et al (2002), who

motivated it not by consideration of radial diffusion but purely as a necessary
addition to reduce the “memory” of the polar field (equivalently b1,0) over
multiple solar cycles. Without it, the varying amount of polar field production
caused by the differing sunspot numbers in different cycles led to an unrealistic
drift in the polar field over time, rather than the regular reversals that are
observed. This drift is illustrated (for another SFT model) in the top panel of
Figure 10.

The optimization studies discussed in Section 3 have also looked for the
optimum τ in shorter simulations where long-term memory is not an issue.
With their simplified source term, Petrovay and Talafha (2019) found that a
decay term (with τ in the range 5–10 yr) was essential, otherwise b1,0 reversed
too late for all of the flow profiles and parameters tried. And in simulations
of Cycle 23 driven by idealised BMRs, Whitbread et al (2017) found that
a decay term with τ < 5 yr helped to reduce unrealistically high values of
b1,0. However, they found that emerging active regions with observed shapes
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reduced b1,0 in itself (as did Yeates, 2020, for Cycle 24), and the optimization
did not strongly select for a particular τ . Moreover, the fit of the optimum
model did not improve significantly when the decay term was included in the
model compared to when it was not. Lemerle et al (2015) also found that
τ was not strongly constrained by the optimization process, with acceptable
solutions found for suitable parameter combinations with τ in the range from
7–32 yr. In summary, the presence of a decay term as required by Schrijver
et al (2002) does not seem to be ruled out by observations.

It should be noted that, in principle, an additional decay term is not the
only way to reduce the cycle-to-cycle memory of b1,0 in the model. Alternatives
that have been adopted include imposed cycle-to-cycle variations in either the
meridional flow speed (Wang et al, 2002) or the tilt angles of emerging BMRs
(Cameron et al, 2010). It is difficult to choose definitively between these options
with only about four solar cycles of full magnetogram observations.

A final remark is that the simplified decay term Br/τ is still compatible
with Faraday’s Law, in the sense that it can be written as the curl of an electric
field. In particular, we would need er · ∇ × E = Br/τ . For example, writing
E = −∇× (Ψer), we could determine Ψ and hence E by solving the Poisson
equation

∇2
hΨ =

Br
τ
, (49)

which has a unique solution on the sphere since
∫
S
Br dS = 0. Of course,

this does not mean that this approximation is a good representation of the
real radial diffusion term (45); for example, this particular E will be not be
localized to the active region itself.

5.2 Diffusive Interior Model

An improved parametrization for (45) was suggested by Baumann et al (2006).
They observed that if one assumes a purely diffusive evolution with uniform
diffusivity η = η0 throughout the convection zone, then the term Rη may be
approximated using only Br on the solar surface.

Specifically, Baumann et al (2006) consider a purely poloidal field B =
∇ × ∇ ×

(
rP
)

inside the convection zone Rb < r < R�, with boundary
conditions Br(Rb, θ, φ) = 0 and Bθ(R�, θ, φ) = Bφ(R�, θ, φ) = 0. Under a
purely diffusive decay

∂B

∂t
= −η0∇×

(
∇×B

)
(50)

with η0 constant, and a suitable choice of P (which choice doesn’t affect B),
this reduces to the scalar problem

∂P

∂t
= η0∇2P,

∂

∂r

(
rP
)∣∣∣∣
r=R�

, P
∣∣∣
r=Rb

= 0. (51)
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The solution, omitting the monopole term, may be written as an expansion

P (r, θ, φ, t) =

∞∑
n=0

∞∑
l=1

l∑
m=−l

[
al,njl(kl,nr) + cl,nyl(kl,nr)

]
Y ml (θ, φ)e−η0k

2
l,nt,

(52)
where Y ml are spherical harmonics and jl, yl are spherical Bessel functions of
the first and second kinds. Linearity of (51) allows us to set al,n = 1 without
loss of generality, so the inner boundary condition fixes the other coefficient

cl,n = − jl(kl,nRb)

yl(kl,nRb)
. (53)

The upper boundary condition then gives

l
[
jl(kl,nR�)yl(kl,nRb)− yl(kl,nR�)jl(kl,nRb)

]
=

kl,nR�
[
jl−1(kl,nR�)yl(kl,nRb)− yl−1(kl,nR�)jl(kl,nRb)

]
. (54)

This equation must be solved numerically for each l and n to determine the
eigenvalues kl,n, which give the decay times τl,n = (η0k

2
l,n)−1 for each com-

ponent, where l is the spherical harmonic degree and n is the radial mode
number. Since the SFT model does not give the subsurface radial structure,
Baumann et al (2006) propose to keep only the modes with n = 0, which are
the slowest decaying modes for each l. They modify the SFT equation (1) to

∂Br
∂t

+∇h ·
(
uhBr

)
= η∇2

hBr −
∞∑
l=1

l∑
m=−l

bl,m(t)

τl,0
Y ml (θ, φ) + S, (55)

where bl,m(t) are the spherical harmonic coefficients in the expansion of Br,

Br(θ, φ, t) =

∞∑
l=1

l∑
m=−l

bl,m(t)Y ml (θ, φ). (56)

The interior diffusivity η0 that determines τl,0 is taken to be different from the
coefficent η of the classical diffusion term.

Note that, since radial modes with n > 0 are neglected, the effect on b1,0
is identical to the simple exponential decay term, with τ = τ1,0 = (η0k

2
1,0)−1.

Accordingly, Baumann et al (2006) showed that their alternative form of the
decay term can also reduce the spurious long-term memory of the SFT model,
as illustrated in the middle and bottom rows of Figure 10. They found that
diffusivity values in the range η0 = 50−100 km2s−1 gave polar field evolutions
consistent with recent observations. For Rb = 0.7R�, and since k1,0 ≈ 5.46,
this corresponds to decay times for b1,0 in the range τ1,0 ≈ 5− 10 yr. In their
model driven by idealized BMRs, Whitbread et al (2017) found an optimum
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η0 = 190 km2s−1, giving a decay time τ1,0 = 2.7 yr, in agreement with the τ
found by optimizing the simple exponential decay term. Virtanen et al (2017)
also adopted the Baumann et al (2006) model, but in a simulation where
active regions had observed shapes; they found a value η0 = 100 km2s−1 to
give reasonable results.

It is worth remarking that these implementations of (55) have used different
diffusivities for η (the classical horizontal diffusion) and η0 (which determines
τl,0). Moreover, the extra term in (55) includes both radial and horizontal
diffusion due to the interior diffusivity η0. If one evaluates the radial diffusion
term (45) for a single mode of the interior solution (52), one obtains

η0

R2
�

∂2

∂r2

(
r2Br

)
= −η0

(
k2
l,n −

l(l + 1)

R2
�

)
Br, (57)

giving a decay time τ ′l,n = η−1
0 [k2

l,n − l(l+ 1)/R2
�]−1 for radial diffusion alone.

However, for small l the difference from τl,n is negligible.

5.3 Other Turbulent Transport Effects

If we drop the simple assumption of a turbulent diffusion in the mean-field
induction equation (41), then there are a wealth of possible transport effects
that could be explored in SFT models. One such effect – expected to be present
from numerical convection simulations – is turbulent pumping (Petrovay,
1994), which adds −γ × B to the turbulent electromotive force (mathemati-
cally equivalent to u). Downward pumping (γr < 0) in a region near the surface
could reduce the aforementioned diffusive link of active regions to deeper layers
(Cameron et al, 2012; Karak and Cameron, 2016). This is because it will tend
to make the magnetic field lines radial, and if Bθ, Bφ ≈ 0 in some region near
the surface then it follows from (44) that Rη = 0, so no additional radial diffu-
sion term should be included in the SFT model. Latitudinal pumping (γθ 6= 0)
is also found to be very strong in convection simulations. However, this relies
on a significant influence of rotation on the turbulence, which is weaker nearer
the surface than in deeper layers.

6 Beyond the Classical Model

Several have sought to improve on the classical SFT model described in the
previous sections. We therefore conclude this review by outlining some of these
developments.

6.1 Improved Small-Scale Flows

The approximation of small-scale flows by a uniform supergranular diffusivity,
D, is perhaps the greatest simplification in the classical model. Three main
approaches for improving the fidelity of the small-scale flow model have been
applied.
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(a) Random attractor (b) Random attractor + small-scale emergence

(c) Random attractor + small-scale emergence + observations (d) Observed synoptic map for comparison

Fig. 11 Illustration of the “random attractor” model for flux dispersal, taken from several
figures of Worden and Harvey (2000). Panels (a)-(c) show simulated maps after evolving
for 27 days, all starting from a synoptic map for CR1928 but with successively more model
components included. (Differential rotation and meridional flow were included in all three
cases.) Panel (d) shows the “ground truth”: an observed synoptic map for CR1929. In all
cases Br is shown in greyscale (white positive, black negative). (Reproduced with permission
from Springer Nature. Original article: https://doi.org/10.1023/A:1005272502885)

Computationally cheapest is the method of Worden and Harvey (2000),
whose primary aim was to improve the unobserved or poorly observed regions
of synoptic maps. For this application, the classical diffusion model is not ideal
because it does not reproduce the “clumping” of magnetic flux on supergran-
ular network boundaries that is clearly evident in observed portions of the
map. To better reproduce this, Worden and Harvey (2000) replaced the diffu-
sion with a “random attractor” term added to each pixel in the map (without
increasing the resolution compared to the classical SFT model). This is shown
in Figure 11(a). They also added a random emergence term to each pixel to
sustain the small-scale background field. This background field was found not
to affect the diffusion of large-scale flux patterns, but it gives a more accurate
net flux in quiet regions (Figure 11b). The technique was successful in improv-
ing the appearance of simulated maps, and continues to be used in the Air
Force Data-Assimilative Photospheric flux Transport model (ADAPT; Arge
et al, 2010; Hickmann et al, 2015).

A second approach is to dispense completely with parametrization of the
small-scale flows, and model them directly through the advection term. This
requires higher spatial and temporal resolution so as to resolve individual
convective cells on the computational grid. Nevertheless, it has been applied
successfully in the Advective Flux Transport (AFT) model (Upton and Hath-
away, 2014, 2018). In this model, the small-scale flows are randomly imposed,

https://doi.org/10.1023/A:1005272502885
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based on a vector spherical harmonic decomposition of the form

uθ(θ, φ) =

lmax∑
l=1

l∑
m=0

(
Sml

∂Y ml (θ, φ)

∂θ
+ Tml

1

sin θ

∂Y ml (θ, φ)

∂φ

)
, (58)

uφ(θ, φ) =

lmax∑
l=1

l∑
m=0

(
Sml

1

sin θ

∂Y ml (θ, φ)

∂φ
− Tml

∂Y ml (θ, φ)

∂θ

)
, (59)

where the complex amplitudes Sml and Tml determine the curl-free and
divergence-free components of uh and are chosen to match the spectrum to
observations. Hathaway et al (2000) found that observed Doppler flows could
be well matched by a two-component spectrum, comprising a supergranular
component centred on l = 110 and a granular component centered on l = 4000.

The third approach is to dispense with a computational grid altogether
and model the magnetic flux by a discrete ensemble of individual flux “con-
centrations”. This was implemented by Schrijver (2001) whose main aim was
to simulate cool stars other than the Sun, and who therefore wanted to include
the mixed-polarity network of small-scale magnetic flux because of its con-
tribution to chromospheric emission. The discrete model of Schrijver (2001)
includes (i) emergence of both active regions and ephemeral regions as BMRs,
(ii) a large-scale random walk dispersal as well as differential rotation and
meridional flow, (iii) a model for fragmentation and coalescence of flux con-
centrations, and (iv) cancellation of flux between opposite polarity fragments.
The model has been successfully applied over all latitudes (Schrijver and Title,
2001) and over a full 11-year cycle (Schrijver and Liu, 2008). A similar model
in Cartesian geometry was applied by Martin-Belda and Cameron (2016) to
study the dispersion of a single active region.

One notable new feature that all three of these models have in common
is nonlinearity: the rate of magnetic flux dispersal is chosen to depend on
the local magnetic field strength, |Br|. In particular, dispersal is suppressed
in strong-field regions, compared to the classical diffusion model. This better
represents real active regions which suppress shedding of the magnetic flux
by supergranulation (Schrijver, 1989). The effect is particularly important for
more active stars (Schrijver, 2001) but is still clearly observed on the Sun.

6.2 Fluctuating Large-Scale Flows

The classical model neglects fluctuations in the meridional flow and differential
rotation, keeping them steady for periods of a solar cycle or longer. However,
observations do suggest variations over the course of the cycle, particularly in
the meridional flow. For example, Hathaway and Rightmire (2010) estimated
the flow from cross-correlating latitudinal strips in magnetograms over Solar
Cycle 23, and found that the dominant Legendre component, P 1

2 ∼ sin(2θ),
reduced in amplitude from 11.5− 13 ms−1 at cycle minimum to only 8.5 ms−1

at cycle maximum.
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A plausible cause of meridional flow variations is the observed inflow toward
active regions determined by helioseismology (Gizon et al, 2001). In SFT sim-
ulations, Jiang et al (2010) showed that an axisymmetric meridional inflow
toward the activity belts leads to a significant decrease of the polar field, sug-
gesting that such meridional flow variations could be a significant ingredient
in the SFT model. And Cameron et al (2010) pointed out that the variations
in P 1

2 found by Hathaway and Rightmire (2010) could be explained by this
inflow, without the need for an overall modulation of meridional flow speed.

Other studies have accounted for the observed dependence of inflow speed
on the active region magnetic flux, through applying a nonlinear velocity that
depends on |Br|. De Rosa and Schrijver (2006) added a velocity of the form

δu(θ, φ, t) = α∇|Br|β (60)

to the discrete SFT model – where Br denotes a Gaussian smoothing of the
originalBr with width 15◦ – but found that the observed flow speeds ( 50 ms−1)
prevented altogether the dispersal of active regions. However, Martin-Belda
and Cameron (2016) did not find this problem and proposed that the original
calculations of De Rosa and Schrijver (2006) were underestimating the flux
dispersal because they continued to apply the nonlinear damping of dispersal
within the active region, while the inflows alone could themselves account for
the damping effect. Cameron and Schüssler (2012) proposed an axisymmetric
parametrization

δuθ(θ, t) = c0

∫ π

0

sin(θ′)
sin(30◦)

d〈|Br|〉
dθ′

e−(θ−θ′)2/σ dθ′, (61)

which corresponds to a Gaussian smoothing of the derivative in latitude (with
σ chosen to give width 20◦). The sin(θ′) factor suppresses unrealistically strong
fluctuations at high latitudes, and an amplitude c0 = 9.2 m s−1G−1 gives com-
parable inflow speeds to Gizon et al (2001). Again, the presence of inflows
reduces the axial dipole at the end of the solar cycle, by about 30% in a
moderate cycle (Martin-Belda and Cameron, 2017), with about a 9% varia-
tion between cycles suggesting that this nonlinearity could conceivably help
to saturate the Babcock-Leighton dynamo. Nagy et al (2020) coupled an SFT
model with flux-dependent inflows to such a dynamo model. They confirmed
that inflows do indeed tend to have a stabilizing effect on cycle amplitudes,
although they also greatly increase the probability of the dynamo entering a
grand minimum of reduced activity – a nonlinear effect which is not apparent
from SFT alone. On the other hand, Yeates (2014) found that the inflows in
a BMR-driven SFT model for Cycle 23 gave poorer matches to the observed
butterfly diagram and dipole reversal time.

A more pragmatic approach is to impose the observed flow variations
directly, as in the AFT model (Upton and Hathaway, 2014), where the best-
fit Legendre coefficients are extracted from 27-day averaged velocity fields
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derived from magnetogram cross-correlation. These then determine uh(θ, t) in
the model, allowing variations in both meridional flow and differential rotation.

6.3 Observational Data Assimilation

In applications where the aim is to recreate as accurately as possible the real
Sun at an observed time, it makes sense to construct magnetic maps that
combine SFT model results with real observations. The role of the SFT model
is then to fill in unobserved (or poorly observed) parts of the solar surface,
such as high latitudes or the far side of the Sun. This approach is central to the
model of Worden and Harvey (2000), as illustrated in Figure 11(c) which shows
the result of combining daily magnetogram observations with the simulation.
The observations are weighted more highly near disk-centre and also eastward
of Central Meridian (where the time since previous observation is greatest).
Similar assimilation of observed magnetograms has been applied in the discrete
SFT model (Schrijver and DeRosa, 2003) and in the AFT model of Upton and
Hathaway (2014).

A more sophisticated approach to data assimilation has been imple-
mented in the ADAPT model, which includes several different sequential
data-assimilation methods such as ensemble Kalman filtering (Hickmann et al,
2015). The concept is to perform an ensemble of model runs. Each is adjusted
at intervals using the observed magnetogram data, with observations being
given greater weight in areas where the model runs disagree with one another.

Unfortunately, difficulties arise in driving time-dependent coronal magnetic
field simulations from SFT models with data assimilation. In such simulations,
the required photospheric boundary condition is the tangential electric field
Eh, not simply Br. In the classical SFT model, the natural electric field would
be

Eh = −u×B + η∇×B + ES , (62)

where ES accounts for the source term (i.e., −er · ∇ × ES = S). When S
comprises individual active regions that have no net magnetic flux, a well-
behaved electric field can be determined (e.g., Yeates and Bhowmik, 2022).
But if the magnetic flux is unbalanced over a larger region then it is impossible
to find a localized ES as would be expected from Ohm’s Law (Yeates, 2017).
This can be a problem when observed magnetograms are incorporated directly,
particularly when active regions straddle the edge of the assimilation region
so that only one polarity is included. If the flux imbalance is corrected by
spreading it over the full Sun, the resulting spurious electric fields lead to
generation of significant spurious electric currents in time-dependent coronal
simulations (Weinzierl et al, 2016).

In practice the simplest way to ensure flux balance is to rephrase the right-
hand side of equation (5) as −er ·∇×Eh, then apply a “constrained transport”
discretization with a staggered mesh (Yee, 1966). Here Eθ and Eφ are defined
at cell edges, and Br at cell centres. Such a numerical scheme is used, for
example, by Yeates (2014). When assimilating magnetograms into the SFT
model in this framework, one would estimate Eh from the observed front-side
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evolution. In the case of a flux imbalance, this would automatically create
a balancing polarity just outside the observed region, minimizing disruption
to the global topology of the coronal magnetic field. However, it remains the
case that systematic errors in observed magnetograms, especially centre-to-
limb variations of the errors, are not well understood. A better understanding
of these errors will require forward modelling with radiative MHD and Stokes
polarimetric inversions.
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Whitbread T, Yeates AR, Muñoz Jaramillo A (2019) The need for active
region disconnection in 3d kinematic dynamo simulations. Astron Astrophys
627:A168

Wilson PR, McIntosh P, Snodgrass HB (1990) The reversal of the solar polar
magnetic fields. i. the surface transport of magnetic flux. Solar Phys 127:1–9



Springer Nature 2021 LATEX template

Surface Flux Transport 35

Worden J, Harvey J (2000) An evolving synoptic magnetic flux map and
implications for the distribution of photospheric magnetic flux. Solar Phys
195:247–268

Yeates AR (2014) Coronal magnetic field evolution from 1996 to 2012:
Continuous non-potential simulations. Solar Phys 289:631–648

Yeates AR (2017) Sparse reconstruction of electric fields from radial magnetic
data. Astrophys J 836:131

Yeates AR (2020) How good is the bipolar approximation of active regions for
surface flux transport? Solar Phys 295:119

Yeates AR, Bhowmik P (2022) Automated driving for global nonpotential
simulations of the solar corona. Astrophys J 935:13

Yee K (1966) Numerical solution of inital boundary value problems involving
maxwell’s equations in isotropic media. IEEE Trans Antennas Propagation
14:302–307


	Introduction
	Fundamentals of the Classical Model
	Dimensionless Form
	Explicit Form
	Implementation

	Flows
	Differential Rotation
	Meridional Flow
	Parameter Optimization

	The Source Term
	Dipole Amplification Factor of a BMR
	Non-Bipolar Source Regions
	Modelling the Source Term

	Physical Justification
	Exponential Decay Term
	Diffusive Interior Model
	Other Turbulent Transport Effects

	Beyond the Classical Model
	Improved Small-Scale Flows
	Fluctuating Large-Scale Flows
	Observational Data Assimilation
	Supplementary information
	Acknowledgments




